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Stable crack growth in nanostructured Li-batteries
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Abstract

The formation of damage, which results from the large volume expansion of the active sites during electrochemical cycling, in rechargeable
Li-batteries, is modelled from a fracture mechanics viewpoint to facilitate the selection of the most effective electrode materials and configu-
rations. The present study is a first step towards examining stable cracking in such high-energy storage devices, by considering three different
configurations at the nanoscale, which are currently at an experimental stage. As a result, stability diagrams concerning crack growth are
constructed and compared for the following cases: (a) the electrodes are thin films, (b) the Li-insertion sites in the anode are nanofibre-like
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nclusions, (c) the active sites in both electrodes are spherical.
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. Introduction

Due to the small Li-intercalation of carbon, which is used
s a base material for negative electrodes in rechargeable Li-
atteries, extensive research is being performed, for over two
ecades in order to find alternative anode materials. This re-
earch has suggested that some of the best candidates are Sn
nd Si, due to their high capacity (990 and 4000 mAh g−1).
hese materials, however, have not been used commercially
ecause of their large volume expansion upon Li-insertion
during the charge/discharge cycle), which results in crum-
ling and severe cracking of the electrode after continuous
lectrochemical cycling[15]. It is therefore anticipated that
odelling fracture in these high-energy storage devices will
rovide further insight towards the behavior of these mate-
ial systems, and allow for the selection of other appropriate
aterials.
A first attempt to model the mechanical response of Li-

atteries, from a purely elastic point of view, during an elec-
rochemical cycle was done by Aifantis and Hackney[1]. The

stress-induced inside the electrodes was modelled by tre
them as thin films that consisted of disc-shaped Li-ion a
sites embedded in an inert glass or ceramic matrix (Fig. 1).
This study is a first step towards modelling the most impo
effect that this cycling deformation process has: cracking
was shown in experimental evidence provided by Aifantis
Hackney[1] (Fig. 2), continuous electrochemical cycling
a single crystal of LiMn2O4 resulted in multiple fractures o
its surface, producing nanocrystals (Fig. 2). It is believed tha
continuous cycling would have the same effect on LiMn2O4
if it were the active site of the cathode; the individual nano
ticles, however, produced by fracture, would no longer b
electrical contact with the remainder of the electrode. A
result the material that fractures loses electrical contact
the electrode and becomes unable to respond to the a
voltage required for charging or controlling the discharg
the battery; hence the electrode becomes unsuitable fo
ther use[1,2].

Moreover, the fracture of individual particles increa
the surface area available to chemical attack by the c
sive agents of the battery (HF and residual H2O) that are
∗ Corresponding author. Tel./fax: +30 2310 995921.
E-mail address:k.aifantis@damtp.cam.ac.uk (K.E. Aifantis).

believed to attack the surfaces of the active material[1]. In
fact, it is reasonable to expect that the chemical instability
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Fig. 1. Idealized geometry of the electrode: Li-insertion particles (shaded)
embedded in a glass (blank) matrix. A unit cell is defined by a circle of radius
b surrounding a circular particle of radiusa.

of the active particle surfaces may interact with the mechan-
ical stress to enhance the structural instability of the material
component under consideration (stress corrosion cracking).
Many battery developers have taken the approach of using
large particle sizes in order to reduce the surface area avail-
able to chemical attack. However, this will accentuate the
problem associated with stress concentrations at the surface
of the particles. An alternative method that can be used is
to develop a composite material in which nanoscale elec-
trochemically active material is encased in large particles
of a chemically inert matrix[3]. This method not only re-
duces the surface area of the active material available to
chemical attack, but also minimizes the gradients in con-
centration responsible for fracture, since the active material
component of the composite has a nanometre length scale.
Therefore, throughout the present work, both electrodes are
taken to consist of Li-active sites (with a nanometre diam-
eter) embedded periodically in an inert, with respect to Li,
matrix.

Consideration of the above electrode configuration along
with fabrication methods that are in the experimental stage
allows the mechanical modelling for the following three
cases: (a) the active sites are disc-shaped platelets and
hence the electrodes take the form of thin films; (b) the ac-
tive sites of the anode are fibre-like inclusions (long cylin-
ders); (c) the active sites in both the anode and cathode are
s

F rystal
L

Fig. 3. Radial cracking configuration assumed for the unit cell.

2. Modelling the electrode damage zone

Since experiments[1] have shown that significant dam-
age results from continuous electrochemical cycling it can be
assumed that the fracture layer surrounding each active site
(Fig. 2) has undergone severe fracture, such that it can support
only radial stresses. The damage zone can thus, be modelled
by a sufficient number of radial cracks that initiate at the ac-
tive particle/matrix interface, as shown inFig. 3. It should be
noted thata andb denote the radii of the active Li-insertion
site and surrounding matrix, respectively. The pressure the
Li-ions induce into the active site is taken to be uniform, and
is set equal top, while the pressure at the outer boundary
of the unit cell is taken to beq. It should be noted that this
configuration is valid upon maximum Li-insertion, therefore,
∆ denotes the maximum expansion of the active sites in the
absence of the matrix. Finally, the radii of the radial cracks
that form as a result of the continuous charge/discharge cycle
are assumed to be equal and their length isρ −a. Since the
damage region defined by their lengthρ −amay be viewed
as supporting only radial stresses (σr), all the other stress
components vanish (σθ =σrθ = 0) inside this zone. This ap-
proach is, in fact, similar to that adopted by Dempsey et al.
[4] in addressing a similar problem in ice mechanics.

3
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ig. 2. Schematical representation of fracture zone in a single c
iMn2O4 due to nanocrack formation (damaged surface layer).
. Thin film electrodes

In hope of increasing process efficiency and optimi
torage capacity (i.e. Li-intercalation in the negative e
rode) significant efforts have been made to prepare an
hat are comprised from thin layers. With this fabrica
ethod it is believed that it will be possible to exceed
lectrochemical capacity of bulk anode materials by incr

ng the amount of Li-insertion sites in the thin film. This h
een successfully performed for anodes comprising o
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composite oxide (TCO)[5] (it should be noted that the active
site is the Sn, while the oxide acts as the inert matrix). An
additional feature of this configuration is that it contributes
to the miniaturization of such devices since the thickness of
these films can be 1 nm.

The main advantage, however, from the mechanics point
of view, is that this thin film configuration makes it feasible to
model the electrodes assuming a state of plane stress; thus, the
Li-active sites are treated as disc-shaped platelets, embedded
in the inert ceramic or glass matrix. Since the same config-
uration (and, hence, electromechanical mechanism) may be
assumed for both the anode and cathode, the subsequent anal-
ysis is valid for both electrodes with the only difference being
the Li-insertion site; for example, LiMn2O4 may be used in
the cathode, and Sn in the anode; the matrix will be taken to
be soda glass, according to[5].

3.1. General displacement and stress expressions for
elasticity in polar coordinates

The stress and displacement expressions in the undam-
aged active site and matrix can be modelled by using isotropic
linear elasticity in polar coordinates. The unit cell under con-
sideration suggests an axially symmetric problem (σrθ = 0);
thus, the non-zero stress components and displacements are
f
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As was mentioned previously, the stress inside the active
site is uniform, henceAs is zero [this also follows from the
mathematics, since A/(0)2 is undefined] and Eqs.(4) and(5)
reduce to

σr = σθ = 2Cs; (6)

ur = 2Cs(1 − vs)r

Es
, (7)

inside the Sn.

3.2. Stress expressions in active site and boundary
conditions

According to the discussion, pertaining toFig. 3, the
stresses at the interfaces atr =a andr =b are given by

σr(a) = −p, σr(b) = −q. (8)

Combination now of Eq.(6)and the first expression in Eq.
(8) gives

2Cs = −p. (9)

Therefore, the stress and displacement expressions inside
the active site are given by

σ = σ = −p; u = −p(1 − vs)r
. (10)
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∂σr

∂r
+ 1

r
(σr − σθ) = 0, (1)

hich in combination with the Airy stress function, Hook
aw and strain compatibility[6] gives

r = A

r2
+ B(1 + 2 log r) + 2C,

θ = − A

r2
+ B(3 + 2 ln r) + 2C, (2)

r = 1

E

[
−A(1 + v)

r
+ 2(1− v)Br log r − B(1 + v)

+ 2C(1 − v)r] , uθ = 4B

E
rθ, (3)

here (r, θ) denote polar coordinates, (E, v) denote the
oung’s modulus and Poisson’s ratio, and the constantA,
, C) are to be determined from appropriate boundary
itions.

Since the displacementuθ should be single-valued, it fo
ows that the constantB vanishes and, thus, the appropr
xpressions for the relevant stress and displacement co
ents simplify to

r = A

r2
+ 2C, σθ = − A

r2
+ 2C, (4)

r = 1

E

[
−A(1 + v)

r
+ 2C(1 − v)r

]
. (5)
r θ r
Es

Since the state under maximum Li-insertion is being
mined, the initial stress-free configuration of the active

s taken to be that which it would assume upon reac
ts maximum expansion in the absence of any constr
mposed by the surrounding matrix. Since the configura
s radially symmetric, this maximum stress-free volume
xpansion of the Sn corresponds to an increase of it
ius, denoted by∆; therefore, the initial radius of this pa

icle is taken to ber =a+∆. The surrounding matrix, whic
s present under the given confined configuration, opp
he aforementioned free expansion by pushing back th
ive site by a distanceδ; therefore, the final radius of th
n is r =a+∆ − δ, and the total displacement of the ou
urface of the Sn particle atr =a+∆ is ur =−δ. Combina
ion of this condition with the second expression in Eq.(10)
ives

r(a + ∆) = −δ = −p(1 − vs)(a + ∆)

Es
. (11)

Now the displacement at the active site/matrix inter
eeds to be formulated. The initial stress-free config

ion of the matrix annulus is taken to be that at wh
o Li-ions have diffused inside the active sites, so the

ial inner radius of the glass isr =a. As the inner sur
ace of the glass annulus and the outer surface of th
article are in contact, it follows from the above pa
raph that once the Sn reaches its maximum expansio∆,

he matrix pushes back a distanceδ. Thus, the final inne
adius of the glass isr =a+∆ − δ, and the displaceme
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condition for the glass at the Sn/glass interface (r =a) is
ur =∆ − δ. Combining this boundary condition with Eq.(11)
gives

ur(a) = ∆ − δ = ∆ − p(1 − vs)(a + ∆)

Es
. (12)

3.3. Stress/displacement expressions in the matrix

The corresponding stress and displacement expressions
within the damage region are determined by following an
analysis similar to that done by Dempsey et al.[4]. This dam-
age zone is modelled as a system of radial cracks, such that
a uniaxial state of stress is assumed to exist within it, i.e.
σθ =σrθ = 0. Thus, the equilibrium relation given in Eq.(1)
reduces to

dσr

dr
+ σr

r
= 0 ⇒ σr(r) = k

r
, for a ≤ r ≤ ρ, (13)

wherek is an integration constant. Given thatσr(a) =−p, it
follows thatk=−pa. Furthermore, Hooke’s law gives

σr = Eg
dur

dr
⇒ dur

dr
= −pa

Egr
⇒ ur(r)

= −pa
ln(r) + u∗, for a ≤ r ≤ ρ, (14)
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case, it is modified to plane stress ([8], p. 103), as

u+(r) = r

2µg

{
p∗

(b2/r2) + ((1 − vg)/(1 + vg))

(b2/ρ2) − 1

−q
(ρ2/r2) + ((1 − vg)/(1 + vg))

1 − (ρ2/b2)

}

for ρ ≤ r ≤ b, (18)

whereµg = Eg/[2(1 + vg)] is the shear modulus of the un-
cracked glass matrix andu+(r) denotes the corresponding
displacement in this region.

Thus, by settingr =ρ in Eq.(18), the following expression
for u+(ρ) is obtained

u+(ρ) = ρ[b2(p∗ + p∗vg − 2q) − ρ2p∗(vg − 1)]

2µ(vg + 1)(b2 − ρ2)
. (19)

Now, insertion of Eq.(19) in Eq. (16) gives a second ex-
pression for the displacement atr =a

ur(a) = pa

Eg

{
ln

(ρ

a

)
+ 2

b2 − Cbρ

b2 − ρ2
− (1 − vg)

}
, (20)

whereC=qb/pa. The displacement atr =b can also be de-
duced from Eq.(18)as

u
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here an expression for the constantu* can be found b
etting the displacement,ur(ρ), right in front of the crac
ip (i.e. just inside the uncracked region) equal to a con
+(ρ) and then substituting back into Eq.(14)

r(ρ) = u+(ρ) ⇒ u+(ρ) = −pa

Eg
ln(ρ) + u∗ ⇒ u∗

= pa

Eg
ln(ρ) + u+(ρ), (15)

hen insertion of Eq.(15) in Eq. (14) concludes that insid
he cracked region the radial displacement is given by

r(r) = pa

Eg
ln

(ρ

r

)
+ u+(ρ), for a ≤ r ≤ ρ. (16)

The uncracked region lies between the crack tip bo
ry (r =ρ) and the glass/glass interface (r =b), and it can b

reated as a hollow disc that is subject to an internal pre
* and an external pressureq (exerted from the neighbourin
nit cell). The internal pressure is equal to that present a

nterface with the fractured region (i.e. atr =ρ) and it can be
ound by direct substitution in Eq.(13), i.e.

∗ = −σr(ρ) = pa

ρ
. (17)

The displacement solution for a plane strain configura
i.e. a hollow cylinder) that is subjected to an internal
xternal pressure, is given by Westergaard[7]; for the presen
r(b) = pa

Eg
2
bρ − Cb2

b2 − ρ2
+ C(1 + vg) . (21)

.4. Stability index formulation

The question of cracking in rechargeable Li-batteries
ow be addressed by considering the hoop stress (σθ) just
utside the damage zone. This is so because, for the p
onfiguration,σθ may be thought of as being the open
ensile stress responsible for crack stability and growth. U
amiliar concepts from linear elastic fracture mechanics
adial symmetry[9] the energy release rate,G, can be define
s a function of crack length for this configuration as

(ρ) = πρ

Egn
σ2

θ (ρ+), (22)

heren is the number of radial cracks, andσθ(ρ+) can be
educed from[4] as

θ(ρ+) = pa

b

{
1 + (ρ/b)[(ρ/b) − 2C]

(ρ/b)[1 − (ρ/b)2]

}
. (23)

Now, following [4] the stability index is defined as

= b

G

dG

dρ
. (24)

It can be seen that the energy release rate depen
he material parameters (E, v), the geometric parametersa,
), the number of cracksn, as well as on the internal a
xternal pressurespandq. The internal pressure can be fou
y equating Eqs.(20) and(12) and solving forp, while the
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external pressureq need not be defined explicitly as long as
C is. Below are solutions for three different outer boundary
conditions.

3.5. Three different outer boundary conditions

3.5.1. Case 1: clamped outer boundary
The first case, which is considered, corresponds to the

common “manufacturing consistent” configuration accord-
ing to which the battery system is tightly constrained by
the outer casing and, therefore, the displacement at the
glass/glass interface is zero. Thus,ur(b) = 0 and in view of
Eq.(21), one can solve forC to obtain

C = 2bρ

(1 − vg)b2 + (1 + vg)ρ2
. (25)

Then inserting Eq.(25) in Eq.(20), and setting the result-
ing expression equal to Eq.(12), the internal pressure can be
explicitly calculated as a function of the geometric and ma-
terial parameters. Finally, combination of Eq.(22) with Eq.
(23)yields the energy release rate for this case,G1, as

G1(ρ) = πp2
1a

2

nEgρ

{
(1 − vg)b2 − (1 + vg)ρ2

(1 − vg)b2 + (1 + vg)ρ2

}2

, (26)

where

p

-
p
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p

3.5.3. Case 3: self-equilibrated loading
The final case to be considered is that of “self-equilibrated

loading”, according to which the force (2�qb) that is exerted
on the glass annulus by the surrounding unit cell is equal to
that exerted onto it by the Li-insertion site (2�pa). Therefore,
C= 1, and solving for the internal pressure as before, the
energy release rate,G3, for this case is found to be

G3(ρ) = πp2
3a

2

nEgρ

(
b − ρ

b + ρ

)2

, (30)

where

p3 = ∆

{
a

Eg

[
ln

(ρ

a

)
+ 2

b

b + ρ
− (1 − vg)

]

+ (a + ∆)

Γ

}−1

. (31)

3.6. Stable crack growth in negative electrode

Finally, the stability index,κ, can be computed for each
case, via Eq.(24), by letting the radii (a and b) and the
material parameters (Es, Eg, vs, vg) be (100 and 1000 nm)
and (41, 75 GPa, 0.33, 0.25)[10], respectively, while the
misfit parameter∆ for these geometric parameters has been
found to be 145 nm[1]. (It should be noted thatn need not
b ial
c cted
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o
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F ress)
c

1 = ∆

{
a

Eg

[
ln

(ρ

a

)
+ 2(1− vg)b2

(1 − vg)b2 + (1 + vg)ρ2

− (1 − vg)

]
+ (a + ∆)

Γ

}−1

. (27)

It should be noted that in Eq.(27), as well as in the ex
ressions to follow, we defineΓ = Es/(1 − vs).

.5.2. Case 2: traction free outer boundary
The second outer boundary condition was formulate

onsidering the “natural” condition, according to which
ressure that is induced on the glass by the active site
ith increasing distance and hence the outer pressure (
lass/glass interface) is zero. Therefore,q= 0 (which implies

hatC= 0), and thus, Eqs.(20)and(12)can be used as befo
o determine the internal pressure, for this case,p2. Then by
sing Eqs.(22)and(23)the energy release rate,G2, is readily
alculated as

2(ρ) = πp2
2a

2

nEgρ

{
b2 + ρ2

b2 − ρ2

}2

, (28)

here

2 = ∆

{
a

Eg

[
ln

(ρ

a

)
+ 2

b2

b2 − ρ2
− (1 − vg)

]

+ (a + ∆)

Γ

}−1

. (29)
e quantified sinceκ is independent of the number of rad
racks that form.) Now a stability diagram can be constru
y plottingκ with respect toρ (Fig. 4). Stable crack growt

s examined with the energy release rateG being exactly
atched by the resistance to fractureR. An additional nec
ssary condition is that the rate of increase, with chan
rack length, ofGbe less than or equal to the rate of incre
f R. Quasibrittle materials require the stability indexκ to
e negative for stable crack growth; it follows that the m
egative the value ofκ, the more stable the crack grow
ecomes, since the difference between final and initiG

ncreases. In this paper, it will be assumed that stable c
rowth (slow crack propagation) is feasible only ifκ is nega

ive. As the stability index increases, crack growth beco

ig. 4. Stable crack growth in negative electrode for thin film (plane st
onfiguration.
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more and more unstable. Once theρ-axis is crossed, unstable
crack growth ensues (catastrophic failure is approached very
rapidly), hence theρ-intercept indicates the critical distance
to which a crack can propagate stably (the stable critical
crack length is found by subtracting theρ-intercept from
the inclusion radiusa). It should be noted that in the case
that an asymptote is featured in the stability diagram (as in
Fig. 4), the crack will close shut well before the asymptote,
ρ-axis intercept, is reached. In this case, the energy release
rate is decreasing with crack growth; at the asymptoteG= 0.
In particular, it can be seen fromFig. 4 that for Case 2, the
corresponding critical stable crack length is rather small,
since theρ-axis is crossed atρ = 450 nm, while for Case 1
(C> 1) an asymptote is attained atρ = 755 nm, which implies
that the crack will close shut before this distance is reached.
Finally, for Case 3, the stability diagram suggests that stable
crack growth takes place until the outer radiusb.

It can, thus be concluded that the “manufacturing consis-
tent” case is more desirable since the cracks are pinched shut
once their critical stable length is approached.

4. Fibre-like active sites

Another fabrication method that is being employed to in-
crease the Li-intercalation in the anode is that according to
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Fig. 5. Stable crack growth in negative electrode with nanofibre-like active
inclusions (plane strain).

5. Spherical active sites

As was mentioned in the introduction the third case that
shall be examined is that according to which the electrodes
are comprised of spherical active sites embedded in a matrix.
Studies concerning this electrode configuration are being per-
formed for nanocomposite Sn/C[14], Sn–Fe–C[15] as well
as for TCO[1] anodes. In all these systems the Sn acts as the
active material.

The quantities considered are the same as in those inFig. 3,
but since we are in three dimensions now the stress and dis-
placement relations change accordingly to

σrr = 2C

r3
+ 2

1 + v

1 − 2v
D;

σθθ = σφφ = − C

r3
+ 2

1 + v

1 − 2v
D;

ur = 2(1+ v)

E

(
− C

2r2
+ Dr

)
, (33)

while all other stress (σrφ, σrθ, σφθ) and displacement (uθ,
uφ) components vanish due to symmetry.

Again, the stress inside the spherical Sn sites does not vary
with position and henceCs = 0. Thus, Eq.(33)simplifies to

σ
1 + vs 2(1+ v)r

i

b

σ

rac-
t the
s nd
hich the active sites take the form of fibres, whose dim
ions are in the sub-micron scale. Experimental observa
howed that this method proved to be succesful in the
here the active material was silicon[11] or carbon[12],
ince this allowed a higher metal content to enter the
nsertion site. Other anode materials which are still in the
erimental stage are Li-capacity templated anodes cons
f about 100 nm SnO2 nanofibres[1,13].

To analyse the behaviour of the aforementioned ano
heir configuration is taken to be that of long cylindrical
ive site inclusions embedded in an inert matrix, and t
onditions of plane strain can be used. The plane stress
sis in Section3 can be modified for plane strain by mak
he following substitutions in Eqs.(1)–(31)([8], p. 103),

E → E′ = E

1−v2

v → v′ = v
1−v

}
Γ → Γ ′ = Es

(1 − 2vs)(1 + vs)
.

(32)

herefore, similarly as before a stability diagram can be
tructed for this case as shown inFig. 5. According to[13],
he active sites in the anode are taken to be Sn, and the m
s soda glass.

As in the thin film configuration, Case 2, which cor
ponds to “natural” conditions allows stable crack growth
il a relatively small distance (ρ = 500 nm). Under the “man
facturing conditions”, Case 1, the crack will close once
table critical crack distanceρ = 710 nm is approached, wh
he “self-equilibrated loading” case (Case 3), allows for
le cracking until the outer boundary of the unit cell.
rr = σθθ = σφφ = 2
1 − 2vs

Ds; ur =
Es

Ds,

(34)

n the active sites.
Since Eq.(8) still holds, the expressions in Eq.(34) can

e re-written in terms of the internal pressurep as

rr = −p ⇒ Ds = − (1 − 2vs)

2(1+ vs)
p ⇒ ur = − (1 − 2vs)rp

Es
.

(35)

The physical reasoning concerning the cont
ion/expansion of the Sn and surrounding matrix is
ame as in Section3, but in view of the new stress a
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displacement expressions established above, Eq.(11) takes
the form

ur(a + ∆) = −δ = − (1 − 2vs)(r + a)p

Es
, (36)

while the displacement at the Sn–glass interface, Eq.(12), is
modified to

ur(a) = ∆ − δ = ∆ − (1 − 2vs)(∆ + a)p

Es
. (37)

As was already stated the cracked region supports only
radial stresses; hence the force equilibrium relations, under
spherical symmetry reduce to

dσr

dr
+ 2σr

r
= 0 (38)

solution of which provides the stress inside the damage zone

σrr(r) = k

r2
, for a ≤ r ≤ ρ, (39)

wherek=−pa2, since the first expression in Eq.(8) implies
thatσrr(a) = −p = k/r2.

Since the other stress components inside this damage
zone vanish, the displacement expression can be determined
through the relation ofσrr with ur as

σ
dur dur pa2 pa2

w ts,
a nt
r

u

d

u

w (i.e.
f pres-
s

u

w h
E

p

Now the displacement right in front of the crack tip can
be computed by direct substitution in Eq.(43)

u+(ρ) = ρ

2Eg(b3 − ρ3)

{
p∗[(1 + vg)b3 + 2(1− 2vg)ρ3]

−q[3b3(1 − vg)]
}

. (45)

Similarly as before a second expression for the displace-
ment at the Sn/glass interface (r =a) is obtained by inserting
Eq.(45) in Eq.(42)

u(a) = pa2

Eg

{
1

a
− 2(1− vg)

ρ
+ 3(1− vg)(b3 − Sbρ2)

2ρ(b3 − ρ3)

}
,

(46)

whereS=qb2/(pa2). The displacement at the outer glass
boundary (r =b) is also found through Eq.(43)

u(b) = pa2

2bEg

{
3(1− vg)(b2ρ − Sb3)

b3 − ρ3
+ S(1 + vg)

}
. (47)

Finally, Eq.(24) for the stability index is still valid, but
in spherical coordinates the energy release rate (according to
Dempsey et al.[9]) is defined as

G
2(1− vg)ρσ2 (ρ+)

w

σ

5

5
Eq.

(

S

lt-
i re,
w

G

w

p

rr(r) = Eg
dr

⇒
dr

= −
Egr2

⇒ ur(r) =
Egr

+ u∗,

(40)

here the constantu* is found by continuity of displacemen
s in Section3. Thus,ur(ρ) is set equal to the displaceme
ight in front of the crack tipu+(ρ) to give

+(ρ) = ur(ρ) = pa2

Egρ
+ u∗ ⇒ u∗ = u+(ρ) − pa2

Egρ
. (41)

It follows that inserting Eq.(41) in Eq. (40) provides the
isplacement inside the cracked region

r(r) = pa2

Eg

(
1

r
− 1

ρ

)
+ u+(ρ), for a ≤ r ≤ ρ, (42)

hile the displacement inside the uncracked glass region
or a hollow sphere subjected to an internal and external
ure) is given by Westergaard[7] as

+(r) = r(1 + vg)

Eg

{
p∗

b3/(2r3) + (1 − 2vg)(1 + vg)

b3/ρ3 − 1

−q
ρ3/(2r3) + (1 − 2vg)(1 + vg)

1 − ρ3/b3

}
,

ρ ≤ r ≤ b (43)

herep* is the pressure exerted atr =ρ, and is found throug
q.(39) to be

∗ = pa2

ρ2
. (44)
(ρ) = θθ

nEg
, (48)

here,

θθ(ρ+) = pa2

b2

[
1 − 3S(ρ/b)2 + 2(ρ/b)3

2(ρ/b)2(1 − (ρ/b)3)

]
. (49)

.1. Three different outer boundary conditions

.1.1. Case 1: clamped outer boundary
Sinceu(b) = 0 in the manufacturing consistent case,

47) is set equal to zero andS is found to be

= 3(1− vg)b2ρ

2(1− 2vg)b3 + (1 + vg)ρ3
. (50)

Inserting Eq.(50) in Eq. (46) and then setting the resu
ng expression equal to Eq.(37), gives the internal pressu
hich can in turn be substituted in Eq.(48) to give

1 = 2(1− vg)a4p2

nEgρ3

[
(1 − 2vg)b3 − (1 + vg)ρ3

2(1− 2vg)b3 + (1 + vg)ρ3

]2

, (51)

here

1 = ∆

{
a2

ρEg

[ρ

a
− 2(1− vg)

+ 3(1−vg)(1−2vg)b3

2(1−2vg)b3+(1+vg)ρ3

]
+ (a + ∆)

Γ sph

}−1

. (52)
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Fig. 6. Stable crack growth in negative electrode with spherical Sn active
sites embedded in glass matrix.

It should be noted that in Eq.(52)as well as in the follow-
ing relationsΓ sph = Eg/(1 − 2vg).

5.1.2. Case 2: traction free outer boundary
For the traction free boundary condition,

σrr (b) = 0⇒q= 0, hence S= 0. Inserting this value of
S in Eq. (46) and then setting the resulting expression equal
to Eq.(37),G2 is found as

G2 = (1 − vg)a4p2

2nEgρ3

[
b3 + 2ρ3

b3 − ρ3

]2

, (53)

where

p2 = ∆

{
a2

ρEg

[
ρ

a
− 2(1− vg) + 3(1− vg)b3

2(b3 − ρ3)

]

+ (a + ∆)

Γ sph

}−1

. (54)

5.1.3. Case 3: self-equilibrating loading
For the case of self-equilibrated loading, i.e.pa2 =qb2,

S= 1 and the internal pressure is solved as before to give

G3 = (1 − vg)a4p2

2nEgρ3

[
(b + 2ρ)(b − ρ)

b2 + bρ + ρ2

]2

, (55)

w
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i ng to
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a ,
5

Fig. 7. Stable crack growth in negative electrode with spherical Sn active
sites embedded in FeC matrix.

Since Sn–Fe–C composites are also under consideration,
it is of interest, to examine crack growth when the matrix is
FeC, as[15] suggests; henceFig. 7 is obtained (ρ = 680 nm,
600 nm and 1000 nm for Cases 1, 2 and 3).

6. Conclusions

The present study is a first attempt to predict the extent of
stable crack growth in Li-ion battery electrodes that comprise
of active/inactive nanocomposites. In particular, stability di-
agrams are obtained for anodes that consist of Tin Compos-
ite Oxide, since various nano-configurations (thin film elec-
trodes, fibre-like active sites in anode, spherical active sites)
still in the experimental stage employ this material. As can be
seen fromFigs. 4–7, all configurations examined herein ex-
hibit similar stability behaviour when subjected to the particu-
lar boundary conditions considered. For the “manufacturing
consistent” case it is desirable to have small critical stable
crack lengths, since the stability diagrams suggest that the
smaller the critical length, the smaller the distance the crack
will propagate before being pinched shut; it should be em-
phasized that this case is the most desirable since the cracks
cannot propagate beyond a certain distance. The “natural”
boundary condition, on the other hand, is the least desirable
s en-
c rack
c unit
c

sir-
a heri-
c y the
s ring
c th for
t

this
a h use
S that
t the
here

3 = ∆

{
a2

ρEg

[
ρ

a
− (1 − vg)

2
− 3(1− vg)ρ2

2(b2 + bρ + ρ2)

]

+ (a + ∆)

Γ sph

}−1

. (56)

The stability diagrams for all cases considered are sh
n Fig. 6(the active sites are again taken to be Sn, accordi
14,15], while the matrix is taken to be soda glass for con
ency with the previous cases). It can be seen that Case
nd 3 allow for critical stable crack growth untilρ = 737 nm
60 nm and 1000 nm, respectively.
ince it is inherently unstable. Finally, no instability was
ountered for the “self-equilibrated loading” case; the c
ould propagate stably toward the outer boundary of the
ell.

It follows from the above discussion that the most de
ble configuration of all those considered is that of sp
al Sn sites embedded in a FeC matrix, having not onl
mallest critical stable crack length for the “manufactu
onsistent” case, but also the largest critical stable leng
he “natural” boundary condition.

A direct extension of the present work is to apply
nalysis to other material systems, such as those whic
i as the active site. Moreover, it should be emphasized

he current analysis can allow for the determination of
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critical crack length (ρc) at which fracture of the electrode
will take place (by substituting the critical energy release rate
of the matrix in Eqs.(22) or (48) and solving forρc); addi-
tional information can thus be obtained as to which materials,
configurations and outer boundary conditions are more ap-
propriate. It may be possible, for example, that the “natural”
outer boundary condition can allow for greater critical crack
lengths (which do not exceed the critical stable crack length)
than the “manufacturing consistent” condition.

For this, however, to be examined the critical energy re-
lease rate for soda glass, FeC and other inert ceramics needs to
be determined through experiments, since such information
is lacking.
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